Attachment B to Resolution No. R15-XXX

Amendment to the *Water Quality Control Plan for the Los Angeles Region* to Revise the Los Angeles River and Tributaries Metals TMDL

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on [insert date].

Amendments:

Chapter 7. Total Maximum Daily Loads (TMDLs) Summaries, Section 7-13 (Los Angeles River and Tributaries Metals TMDL)

Add:

This TMDL revision was adopted by

The Regional Water Quality Control Board on [insert date].

This TMDL revision was approved by:

The State Water Resources Control Board on [*insert date*]. The Office of Administrative Law on [*insert date*]. The U.S. Environmental Protection Agency on [*insert date*].

The following table includes the elements of this TMDL.

Element	Key Findings and Regulatory Provisions
Problem Statement	Segments of the Los Angeles River and its tributaries are on the Clean Water Act section 303(d) list of impaired waterbodies for copper, cadmium, lead, zinc, aluminum and selenium. The metals subject to this TMDL are toxic pollutants, and the existing water quality objectives for the metals reflect national policy that the discharge of toxic pollutants in toxic amounts be prohibited. When one of the metals subject to this TMDL is present at levels exceeding the existing numeric objectives, then the receiving water is toxic. The beneficial uses impaired by metals in the Los Angeles River and its tributaries are those associated with aquatic life and water supply, including wildlife habitat, rare, threatened or endangered species, warm freshwater habitat, wetlands, and groundwater recharge. TMDLs are developed for reaches on the 303(d) list and for reaches where recent data indicate additional impairments. Addressing the impairing metals throughout the Los Angeles River watershed will ensure that the metals do not contribute to an impairment elsewhere in the watershed. Metals allocations are therefore developed for upstream reaches and tributaries that drain to impaired reaches.
	These TMDLs address wet- and dry-weather discharges of copper, lead, zinc and selenium and wet-weather discharges of cadmium. Impairments related to cadmium only occur during wet weather. Impairments related to selenium are confined to Reach 6 and its tributaries. Dry-weather impairments related to zinc only occur in Rio Hondo Reach 1. The aluminum listing was based on water quality objectives set to support the municipal water supply beneficial use (MUN). MUN is a conditional use in the Los Angeles River watershed. The United States Environmental Protection Agency (USEPA) has determined that TMDLs are not required for impairments of conditional uses.
Numeric Target (Interpretation of the numeric water quality objective, used to calculate the waste load allocations)	Numeric water quality targets are based on the numeric water quality criteria established by the California Toxics Rule (CTR). The targets are expressed in terms of total recoverable metals. There are separate targets for dry and wet weather because hardness values and flow conditions in the Los Angeles River and tributaries vary between dry and wet weather. The dry-weather targets apply to days when the maximum daily flow in the River is less than 500 cfs. The wet-weather targets apply to days when the maximum daily flow in the River is equal to or greater than 500 cfs.
	The dry-weather targets for copper and lead are based on chronic CTR criteria. The dry-weather targets for lead are based on recalculated chronic lead criteria. The dry-weather targets for zinc are based on acute CTR criteria. Copper, lead and zinc targets are dependent on hardness and a water-effects ratio (WER), which are both factors built into the CTR criteria to adjust for site specific conditions, and conversion factors to convert between dissolved and total recoverable metals. Copper and lead dry-weather targets are based on 50 th percentile hardness values. The Z_Z inc dry-weather targets are based on 10 th

 Table 7-13.1 Los Angeles River and Tributaries Metals TMDL: Elements

Element	Key Findings and Regulatory Provisions
	percentile hardness values. Site-specific copper conversion factors are
	applied immediately downstream of the Tillman and LA-Glendale
	water reclamation plants (WRP). CTR default conversion factors are used for copper, lead, and zinc in all other cases. The dry-weather target
	for selenium is independent of hardness or conversion factors.
	~
	Dry-weather conversion factors: Default Below Tillman WRP Below LA-Glendale WRP
	Copper 0.96 0.74 0.80 Lead 0.79 0.74 0.80
	Zinc 0.61
	Dry-weather numeric targets (µg total recoverable metals/L)
	<u> </u>
	Reach 5, 6
	and Bell Creek WER ¹ x 30 WER ¹ x $\frac{19170}{5}$ 5
	Reach 4WER ² x 26WER ¹ x $\frac{1083}{20}$ The image of the
	Tujunga Wash WER ^{3 x} 20 WER ¹ x 83 Reach 3
	above LA-Glendale
	WRP-and Verdugo $WER^2 \ge 23$ $WER^1 \ge \frac{12102}{2}$
	Verdugo WashWER 4 x 23WER 1 x 102
	Reach 3 below
	LA-Glendale WRP WER ² x 26 WER ¹ x $\frac{12100}{12}$
	Burbank Western
	Channel (above WRP) WER ^{25} x 26 WER ¹ x 14126
	Burbank Western
	$\frac{\text{Channel (below WRP) WER}^{25} \text{ x } 19 \text{WER}^{1} \text{ x } 9.1\underline{75}}{\text{Reach } 2}$
	Reach 2 and Arroyo Seco – $WER^2 \ge 22$ $WER^1 \ge \frac{1194}{2}$
	Arroyo Seco WER $x 22$ WER $x 124$ Arroyo Seco WER ⁶ x 22 WER ¹ x 94
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	Iteration 1WER \mathbb{R}^{12} x 19WER \mathbb{R}^{12} x 19Compton CreekWER \mathbb{R}^{17} x 19WER \mathbb{R}^{17} x 19
	Rio Hondo Reach 1 $WER^{\frac{18}{8}} \times 13$ $WER^{1} \times \frac{5.037}{12}$ $WER^{1} \times 131$
	Monrovia Canyon _ WER ¹ x 8.2 <u>66</u>
	1 WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	² The WER for this constituent in this reach is 3.967 .
	$\frac{3}{4}$ The WER for this constituent in this reach is 8.28. $\frac{4}{4}$ The WER for this constituent in this reach is 2.18.
	$\frac{1}{5}$ The WER for this constituent in this reach is 4.75.
	$\frac{6}{7}$ The WER for this constituent in this reach is 1.32.
	$\frac{7}{8}$ The WER for this constituent in this reach is 3.36. $\frac{8}{8}$ The WER for this constituent in this reach is 9.69.
	The weby for this constituent in this reach is 9.09.
	The wet-weather targets for cadmium, copper, lead and zinc are based
	on acute CTR criteria and the 50 th percentile hardness values for storm
	water collected at the Wardlow gage station, multiplied by a WER. For
	lead, the wet-weather target is based on the recalculated acute lead
	criterion. Numeric targets for all metals are adjusted based on the 50 th

Element	Key Findings and Regulatory Provisions
	percentile hardness values for storm water collected at the Wardlow gage station, multiplied by a WER. Conversion factors for copper, lead and zinc are based on a regression of dissolved metals values to total recoverable metals values collected at Wardlow. The CTR default conversion factor is applied to cadmium. The wet-weather target for selenium is independent of hardness or conversion factors.
	Wet-weather conversion factors:
	Cadmium0.94Copper0.65Lead0.82Time0.61
	Zinc 0.61 Wet-weather numeric targets (µg total recoverable metals/L)
	Cd Cu Pb Zn Se
	1000000000000000000000000000000000000
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is $3.96\underline{7}$.
Source Analysis	There are significant differences in the sources of metals loadings during dry weather and wet weather. During dry weather, most of the metals loadings are in the dissolved form. The three major publicly owned treatment works (POTWs) that discharge to the river (Tillman WRP, LA-Glendale WRP, and Burbank WRP) constitute the majority of the flow and metals loadings during dry weather. The storm drains also contribute a large percentage of the loadings during dry weather because although their flows are typically low, concentrations of metals in urban runoff may be quite high. The remaining portion of the dry weather flow and metals loadings represents a combination of tributary flows, groundwater discharge, and flows from other permitted NPDES discharges within the watershed.
	During wet weather, most of the metals loadings are in the particulate form and are associated with wet-weather storm water flow. On an annual basis, storm water contributes about 40% of the cadmium loading, 80% of the copper loading, 95% of the lead loading and 90% of the zinc loading. This storm water flow is permitted through two municipal separate storm sewer system (MS4) permits, a separate statewide storm water permit for the California Department of <u>Transportation (Caltrans) MS4 permit</u> , a general construction storm water permit and a general industrial storm water permit.
	Nonpoint sources of metals may include tributaries that drain the open space areas of the watershed. Direct atmospheric deposition of metals on the river is also a small source. Indirect atmospheric deposition on the land surface that is washed off during storms is a larger source, which is accounted for in the estimates of storm water loadings.
	The sources of selenium appear to be related to natural levels of selenium in soils in the upper watershed. Separate studies are underway to evaluate whether selenium levels represent a "natural condition" for this watershed.

Element	Key Findings and Regulatory Provisions
Loading Capacity	Dry Weather
	Dry-weather TMDLs are developed for the following pollutant waterbody combinations (allocations are developed for upstream reaches and tributaries to meet TMDLs in downstream reaches):
	• Copper for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Compton Creek, Tujunga Wash, Rio Hondo Reach 1.
	• Lead for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Rio Hondo Reach 1, Compton Creek, Monrovia Canyon Creek.
	• Zinc for Rio Hondo Reach 1.
	• Selenium for Reach 6, Aliso Creek, Dry Canyon Creek, McCoy Canyon Creek.
	For dry weather, loading capacities are equal to reach-specific numeric targets multiplied by reach-specific critical dry-weather flows. Summing the critical flows for each reach and tributary, the critical flow for the entire river is 203 cfs, which is equal to the combined design flow of the three POTWs (169 cfs) plus the median flow from the storm drains and tributaries (34 cfs). The median storm drain and tributary flow is equal to the median flow at Wardlow (145 cfs) minus the existing median POTW flow (111 cfs). The dry-weather loading capacities for each impaired reach include the critical flows for upstream reaches. The dry-weather loading capacity for Reach 5 includes flows from Reach 6 and Bell Creek, the dry-weather loading capacity for Reach 3 includes flows from Verdugo Wash, and the dry-weather loading capacity for Reach 2 includes flows from Arroyo Seco.
	Dry-weather loading capacity (total recoverable metals)
	CriticalCuPbZnFlow (cfs)(kg/day)(kg/day)(kg/day)LA River Reach 58.74WER ¹ x 0.65WER ¹ x 0.393.6
	LA River Reach 5 8.74 WER $x 0.65$ WER $x 0.593.6$ LA River Reach 4 129.13 WER ² $x 8.1$ WER ¹ $x 3.226$ LA River Reach 3 39.14 WER ² $x 2.32.5$ WER ¹ $x 1.019.6$ LA River Reach 2 4.44 WER ² $x 0.160.24$ WER ¹ $x 0.0841.02$ LA River Reach 1 2.58 WER ² $x 0.14$ WER ¹ $x 0.0750.64$ Tujunga Wash 0.15 WER ⁴³ $x 0.007$ WER ¹ $x 0.00350.029$ Burbank Channel 17.3 WER ²⁴ $x 0.80$ WER ¹ $x 0.393.2$ Rio Hondo Reach 1 0.50 WER ⁴⁵ $x 0.015$ WER ¹ $x 0.045061$ WER ¹ $x 0.16$ Compton Creek 0.90 WER ⁶⁴ $x 0.041$ WER ¹ $x 0.0200.16$ ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent in this reach is 3.967. ³ The WER for this constituent in this reach is 4.75. ⁵ The WER for this constituent in this reach is 9.69. ⁶ The WER for this constituent in this reach is 3.36.
	No dry-weather loading capacities are calculated for lead in Monrovia Canyon Creek or selenium in Reach 6 or its tributaries. Concentration-

Element	Key Findings and Regulatory Provisions
	based allocations are assigned for these metals in these reaches.
	Wet Weather
	Wet-weather TMDLs are calculated for cadmium, copper, lead, and zinc in Reach 1. Allocations are developed for all upstream reaches and tributaries to meet these TMDLs.
	Wet-weather loading capacities are calculated by multiplying daily storm volumes by the wet-weather numeric target for each metal. The resulting curves identify the load allowance for a given flow.
	Wet-weather loading capacity (total recoverable metals)
	Metal Load Duration Curve (kg/day)
	Cadmium Daily storm volume x WER ¹ x $3.1 \mu g/L$
	Copper Daily storm volume x WER ² x $17 \mu g/L$
	Lead Daily storm volume x WER ¹ x $\frac{62-94}{\mu}$ µg/L
	Zinc Daily storm volume x WER ¹ x 159 μ g/L
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.967 .
Load Allocations (for nonpoint	Dry Weather
sources)	Dry-weather nonpoint source load allocations (LAs) for copper and lead apply to open space and direct atmospheric deposition to the river. Dry-weather open space load allocations are equal to the critical flow for the upper portion of tributaries that drain open space, multiplied by the numeric targets for these tributaries.
	Open space dry-weather LAs (total recoverable metals)
	Critical Flow Cu (kg/day) Pb (kg/day)
	Tujunga Wash 0.12 $WER^{\frac{12}{2}} \times 0.0056$ $WER^{1} \times 0.0\frac{24028}{1000}$ Arroyo Seco 0.33 $WER^{\frac{13}{2}} \times 0.018$ $WER^{1} \times 0.0\frac{7509}{1000}$
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent in this reach is 8.28. ³ The WER for this constituent in this reach is 1.32.
	Load allocations for direct atmospheric deposition to the entire river are obtained from previous studies (3 kg/year for copper, 2 kg/year for lead and 10 kg/year for zinc.) Loads are allocated to each reach and tributary based on their length. The ratio of the length of each river segment to the total length of the river is multiplied by the estimates of direct atmospheric loading to the entire river.

Element	Key Findings and Regulatory Provisions
	Direct air deposition dry-weather LAs (total recoverable metals)
	Cu (kg/day) Pb (kg/day) Zn(kg/day)
	LA River Reach 6 $\frac{\text{WER}^{4} \times 3.3 \times 10^{-4}}{\text{WER}^{4} \times 2.2 \times 10^{-4}}$
	LA River Reach 5 WER ⁺ x-3.6x10 ⁻⁴ WER ⁺ x-2.4x10 ⁻⁴
	LA River Reach 4 $WER^{+}x-8.1x10^{-4}$ $WER^{+}x-5.4x10^{-4}$
	LA River Reach 3 WER ^{\pm} x 6.04x10 ⁻⁴ WER ^{\pm} x 4.03x10 ⁻⁴
	LA River Reach 2 $\frac{\text{WER}^{4} \cdot 1.4 \times 10^{-3} \text{WER}^{4} \cdot 9.5 \times 10^{-4}}{\text{LA River Reach 1 } \frac{\text{WER}^{4} \cdot 4.4 \times 10^{-4} \text{WER}^{4} \cdot 2.96 \times 10^{-4}}{\text{WER}^{4} \cdot 2.96 \times 10^{-4}}$
	LA River Reach 1 WER $\times 4.4x10$ WER $\times 2.96x10$ Bell Creek WER $\star 2.98x10^{-4}$ WER $\star 1.99x10^{-4}$
	Tujunga Wash WER 4 -7.4x10 ⁻⁴ WER 4 -4.9x10 ⁻⁴
	Verdugo Wash $\frac{WER^{4} \times 4.7 \times 10^{-4}}{WER^{4} \times 3.2 \times 10^{-4}}$
	Burbank Channel WER ⁺ \times 7.1x10 ⁻⁴ WER ⁺ \times 4.7x10 ⁻⁴
	Arroyo Seco $WER^{+}x^{-}7.3x10^{-4} WER^{+}x^{-}4.9x10^{-4}$
	Rio Hondo Reach $1 \frac{\text{WER}^{4}}{\text{WER}^{4}} \times 6.4 \times 10^{-4} \frac{\text{WER}^{4}}{\text{WER}^{4}} \times 4.2 \times 10^{-4} \frac{\text{WER}^{4}}{\text{WER}^{4}} \times 2.1 \times 10^{-3}$
	Compton Creek $WER^4 \times 6.5 \times 10^{-4} WER^4 \times 4.3 \times 10^{-4}$
	⁺ WER(s) have a default value of 1.0 unless site specific WER(s) are approved.
	A dry-weather concentration-based load allocation for lead equal to the dry-weather numeric target (WER ¹ x $\frac{8.266}{\mu g/L}$) applies to Monrovia Canyon Creek. The load allocation is not assigned to a particular nonpoint source or group of nonpoint sources. ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	A dry-weather concentration-based load allocation for selenium equal to the dry-weather numeric target (5 μ g/L) is assigned to Reach 6 and its tributaries. The load allocation is not assigned to a particular nonpoint source or group of nonpoint sources.
	Wet Weather
	Wet-weather load allocations for open space are equal to the percent metals loading from open space (predicted by the wet-weather model) multiplied by the total loading capacity, then by the ratio of open space located outside the storm drain systemmunicipal separate storm sewer systems (MS4s) to the total open space area. There is no load allocation for cadmium because open space is not believed to be a source of the wet-weather cadmium impairment in Reach 1.
	Wet-weather open space LAs (total recoverable metals)
	Metal Load Allocation (kg/day)
	Copper WER ⁴² x $2.6 \times 10^{-10} \mu g /L/day x daily storm volume(L)$
	Lead WER ¹ x $2.4x10^{-10} \mu g / L/day x daily storm volume(L)$
	Zinc $WER^{1} \ge 1.4 \ge 10^{-9} \ \mu g \ /L/day \ge daily \ storm \ volume(L)$ ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.
	Wet-weather load allocations for direct atmospheric deposition are equal to the percent area of the watershed comprised by surface water (0.2%) multiplied by the total loading capacity.

Element	Key Findings and	Regulatory Provisions	
	Wet-weather di	rect air deposition LAs (tota	l recoverable metals)
	Metal Lo	ad Allocation (kg/day)	
		$ER^1 \ge 6.2 \ge 10^{-10} \ \mu g \ /L/day \ge day$	aily storm volume(L)
	Copper WI	ER^{42} x 3.4x10 ⁻¹⁰ µg /L/day x d	laily storm volume(L)
		$ER^{1} \times 1.288 \times 10^{-10} \mu g / L/day x$	
		$ER^{1} \times 3.2 \times 10^{-9} \mu g /L/day x da$	
		ault value of 1.0 unless site-spec	
	2 The WER for this of	constituent is 3.97.	
	A wet-weather co	ncentration-based load alloca	tion for selenium equal
		numeric target (5 μ g/L) is a	-
		ne load allocation is not as	
		group of nonpoint sources.	
Waste Load Allocations (for	Dry Weather		
point sources)	• •	source waste load allocation	
	-	Iman, Glendale, and Burbank to the storm water permittee	U
		Long Beach MS4 permit	
	-	eral Construction permittees)	
	subtracting load al	locations (and waste load allo	cations for reaches with
		e total loading capacity. Con	
	load allocations ar	e developed for other point so	ources in the watershed.
		tration-based waste load alloc	
	6	and Burbank WRPs are deve	
	-	or copper and lead in Reac	th 4, Reach 3 and the
		Channel, respectively.	
	POTW dry	-weather WLAs (total recov Cu	erable metals) <u>*</u> : Pb
	Tillman	Cu	10
	Concentration-base	ed (μ g/L) WER ² x 26	$WER^{1} \ge \frac{1083}{1000}$
	Mass-based (kg/da		WER ¹ x $\frac{3.03}{25}$
	Glendale		
	Concentration-bas		WER ¹ x $\frac{12100}{100}$
	Mass-based (kg/da	$WER^2 \ge 2.0$	WER ¹ x 0.88<u>7.6</u>
	Burbank	23	1
	Concentration-base		WER ¹ x 9.175
	Mass-based (kg/da		WER ¹ x $\frac{0.312.6}{0.31}$
	2 WER(s) have a def 2 The WER for this c	ault value of 1.0 unless site-spec	ific WER(s) are approved.
	³ The WER for this c		
		WER, effluent limitations sl	
		nass discharges do not exceed t by performance of this facility	
		by performance of this facility	
		WER, for discharges regulated	
		w WER-adjusted allocations,	-
		concentrations do not exceed the	
	<u>mat can be reliat</u>	bly maintained by the facilit	y s applicable treatment

Element	Key Findings and Regulatory Provisions
	technologies existing at the time of permit issuance, reissuance, or
	modification unless anti-backsliding requirements in Clean Water Act section
	402(o) and anti-degradation requirements are met. Permit compliance with
	anti-degradation and anti-backsliding requirements shall be documented in permit fact sheets.
	permit fact sheets.
	Dry-weather waste load allocations for storm water permittees are equal
	to storm drain flows (critical flows minus median POTW flows minus
	median open space flows) multiplied by reach-specific numeric targets,
	minus the contribution from direct air deposition.
	Storm water <u>Permittees'</u> dry-weather WLAs (total recoverable
	metals) <u>*</u>
	Critical Flow Cu Pb Zn
	(cfs) (kg/day) (kg/day) (kg/day)
	LA River Reach 6 7.20 WER ¹ x 0.53 WER ¹ x $0.333.0$
	LA River Reach 5 0.75 $WER^{24} \ge 0.05 WER^{1} \ge 0.030 = 0.03$
	LA River Reach 4 5.13 $WER^{24} \ge 0.32$ $WER^{1} \ge 0.12 = 1.04$
	LA River Reach 3 4.84 $WER^{24} \ge 0.06 WER^{1} \ge 0.031.18$
	LA River Reach 2 3.86 $WER^{2+} \ge 0.13$ $WER^{1} \ge 0.070.89$
	LA River Reach 1 2.58 $WER^{2+}_{2} \ge 0.14 WER^{1} \ge 0.070.64$
	Bell Creek 0.79 WER ¹ x 0.06 WER ¹ x $0.040.33$
	Tujunga Wash 0.03 $WER^{\frac{34}{2}} \ge 0.001 WER^{\frac{1}{2}} \ge 0.0002 0.0053$
	Burbank Channel 3.3 $WER^{44} \times 0.15 WER^{1} \times 0.070.61$
	Verdugo Wash 3.3 $WER^{54} \times 0.18 WER^{1} \times \frac{0.100.82}{0.82}$
	Arroyo Seco 0.25 WER ^{$6+$} x 0.01 WER ¹ x 0.01000
	Rio Hondo Reach 1 0.50 WER ^{74} x 0.01 WER ^{$1x$} x 0.0 0645 WER ^{$1x$} x 0.16
	Compton Creek 0.90 WER ^{8^{1}} x 0.04 WER ¹ x $0.020.16$
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	$\frac{2}{3}$ The WER for this constituent is 3.97. The WER for this constituent is 8.28.
	$\frac{1}{4}$ The WER for this constituent is 4.75.
	$\frac{5}{5}$ The WER for this constituent is 2.18.
	$\frac{6}{7}$ The WER for this constituent is 1.32.
	$\frac{7}{8}$ The WER for this constituent is 9.69. $\frac{8}{8}$ The WER for this constituent is 3.36.
	* For MS4 discharges regulated under this TMDL with concentrations below
	WER-adjusted allocations, MS4 Permittees shall track trends in concentrations
	and loads and, where increasing trends are observed shall conduct an
	evaluation of the cause(s) of the increasing trends in concentration and/or load
	within the contributing drainage area(s). If the increasing trend is caused by the MS4 Permittees, the MS4 Permittees shall then identify additional watershed
	control measures and corresponding time schedules for implementation to
	arrest the increasing trend(s). MS4 Permittees shall report on trends and
	evaluations of the cause(s) of any increasing trends in their annual reports and
	shall include actions to arrest increasing trends in their annual reports and/or as
	part of their adaptive management process in an approved Watershed Management Program or Enhanced Watershed Management Program. Further,
	regardless of the WER, Permit compliance with anti-degradation and anti-
	backsliding requirements shall be documented in permit fact sheets.

Element	Key Findings and Regulatory Provisions
	A zero waste load allocation is assigned to all <u>general</u> industrial and construction storm water permittees during dry weather. The remaining waste load allocations are shared by the MS4 permittees and Caltrans.
	Other NPDES Permits
	Concentration-based dry-weather waste load allocations apply to the other NPDES permits* that discharge to the reaches and tributaries in the following table.
	* "Other NPDES permits" refers to minor NPDES permits, general non-storm water NDPES permits, and major permits other than the Tillman, LA-Glendale, and Burbank POTWs.
	Other dry-weather WLAs (µg total recoverable metals/L)
	Cu Pb Zn Se
	Reach 5, 6 and Bell Creek $WER^1 \ge 30$ $WER^1 \ge \frac{19170}{5}$
	Reach 4 WER ^{$2+$} x 26 WER ¹ x 1083
	Tujunga Wash WER ³ x 20 WER ¹ x 102
	Reach 3
	above LA-Glendale
	WRP and Verdugo WER ^{$2+$} x 23 WER ^{1} x $\frac{12102}{102}$
	Verdugo Wash WER ⁴ x 23 WER ¹ x 100
	Reach 3 below
	LA-Glendale WRP $WER^{24} \times 26 WER^1 \times \frac{12100}{100}$
	Burbank Western Channel(above WRP) WER ⁵⁴ x 26 WER ¹ x 14 <u>126</u>
	Burbank Western Channel (below WRP) WER ⁵⁴ x 19 WER ¹ x 9. 751
	Channel (below WRP) WER ⁻ x 19 WER x 9- <u>/5</u> 1 Reach 2
	$\frac{\text{Reach 2}}{\text{and Arroyo Seco}} \qquad \text{WER}^{42} \text{ x } 22 \text{WER}^{1} \text{ x } \frac{1194}{1194}$
	Arroyo Seco WER ⁶ x 22 WER x 94
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	$\frac{\text{Compton Creek}}{\text{Rio Hondo Reach 1}} = \frac{\text{WER} \times 13}{\text{WER}^{\frac{8}{4}} \times 13} = \frac{\text{WER} \times 0.512}{\text{WER}^{1} \times 5.037} = \frac{1}{\text{WER}^{1} \times 131}$
	$\frac{1}{1}$ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	² The WER for this constituent in this reach is 3.97.
	$\frac{3}{4}$ The WER for this constituent in this reach is 8.28.
	$\frac{4}{5}$ The WER for this constituent in this reach is 2.18. $\frac{5}{5}$ The WER for this constituent in this reach is 4.75.
	⁶ The WER for this constituent in this reach is 1.32.
	 ⁷ The WER for this constituent in this reach is 3.36. ⁸ The WER for this constituent in this reach is 9.69.
	*Regardless of the WER, for discharges regulated under this TMDL with
	concentrations below WER-adjusted allocations, effluent limitations shall

Element	Key Findings and Regulatory Provisions
	ensure that effluent concentrations do not exceed the levels of water quality
	that can be reliably maintained by the facility's applicable treatment
	technologies existing at the time of permit issuance, reissuance, or
	modification unless anti-backsliding requirements in Clean Water Act section
	402(o) and anti-degradation requirements are met. Permit compliance with
	anti-degradation and anti-backsliding requirements shall be documented in permit fact sheets.
	permit fact sheets.
	Wet Weather
	During wet-weather, POTW allocations are based on dry-weather in- stream numeric targets because the POTWs exert the greatest influence over in-stream water quality during dry weather. During wet weather, the concentration-based dry-weather waste load allocations apply but the mass-based dry-weather allocations do not apply when influent flows exceed the design capacity of the treatment plants. Additionally, the POTWs are assigned reach-specific allocations for cadmium and zinc based on dry weather targets to meet the wet-weather TMDLs in Reach 1.
	POTW wet-weather WLAs (total recoverable metals):
	Cd Cu Pb Zn
	Tillman
	Concentration-based
	$(\mu g/L)$ WER ¹ x4.7 WER ² x26 WER ¹ x 1083 WER ¹ x212
	Mass-based
	(kg/day) WER ¹ x1.4 WER ² x7.8 WER ¹ x $\frac{3.0325}{2}$ WER ¹ x64
	Glendale
	Concentration-based
	(μ g/L) WER ¹ x5.3 WER ² x26 WER ¹ x 12100 WER ¹ x253
	Mass-based
	(kg/day) WER ¹ x0.40 WER ² x2.0 WER ¹ x $\frac{0.887.6}{0.000}$ WER ¹ x19
	Burbank
	Concentration-based
	$(\mu g/L)$ WER ¹ x4.5 WER ²³ x19 WER ¹ x9.175 WER ¹ x 212
	Mass-based (kg/day) WER ¹ x0.15 WER ²³ x0.64 WER ¹ x $0.312.6$ WER ¹ x7.3
	(kg/day) WER ¹ x0.15 WER ^{± 3} x0.64 WER ¹ x $0.312.6$ WER ¹ x7.3
	1 WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	² The WER for this constituent is 3.967 .
	$\frac{3}{2}$ The WER for this constituent is 4.75.
	Regardless of the WER, for discharges regulated under this TMDL with
	concentrations below WER-adjusted allocations, effluent limitations shall ensure effluent concentrations do not exceed the level of water quality that can
	be reliably maintained by the facility's applicable treatment technologies
	existing at the time of permit issuance, reissuance, or modification unless anti-
	backsliding requirements in Clean Water Act section 402(o) and anti-
	degradation requirements are met. Permit compliance with anti-degradation
	and anti-backsliding requirements shall be documented in permit fact
	sheets. Regardless of the WER, effluent limitations shall ensure that effluent
	concentrations and mass discharges do not exceed the levels of water quality
	that can be attained by performance of this facility's treatment technologies

Element	Key Findings and Regulatory Provisions
	existing at the time of permit issuance, reissuance, or modification.
	Wet-weather waste load allocations for the grouped storm water permittees are equal to the total loading capacity minus the load allocations for open space and direct air deposition and the waste load allocations for the POTWs. Wet-weather waste load allocations for the grouped storm water permittees apply to all reaches and tributaries.
	Storm water wet-weather WLAs (total recoverable metals):
	Metal Waste Load Allocation (kg/day)
	Cadmium $WER^1 x \ 3.1x10^9 x \text{ daily volume}(L) - 1.95$ Copper $WER^{42} x \ 1.7x10^8 x \text{ daily volume}(L) - 10$ Lead $WER^1 x \ 6.29.4x10^8 x \text{ daily volume}(L) - 4.235$ Zinc $WER^1 x \ 1.6x10^{-7} x \text{ daily volume}(L) - 90$
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .
	The combined storm water waste load allocation is apportioned between the different storm water categories by their percent area of the portion of the watershed served by storm drains.
	MS4 wet-weather WLAs (total recoverable metals):
	Metal Waste Load Allocation (kg/day)
	Cadmium $WER^1 x 2.8x10^{-9} x daily volume(L) - 1.8$ Copper $WER^{\frac{12}{2}} x \frac{1.58.5}{10^8} x 10^{-8} x daily volume (L) - \frac{9.532}{10^8}$ Lead $WER^1 x 5.6x10^8 x daily volume (L) - 3.85$ Zinc $WER^1 x 1.4x10^{-7} x daily volume (L) - 83$ $\frac{^1WER(s)}{10^8} have a default value of 1.0 unless site-specific WER(s) are approved.\frac{^2}{10^8} The WER for this constituent is 3.97.$
	*For municipal separate storm sewer system (MS4) discharges regulated under this TMDL with concentrations below WER-adjusted allocations, MS4 Permittees shall track trends in concentrations and loads and, where increasing trends are observed shall conduct an evaluation of the cause(s) of the
	increasing trends in concentration and/or load within the contributing drainage area(s). MS4 Permittees shall then identify additional watershed control measures and corresponding time schedules for implementation to arrest the increasing trend(s). MS4 Permittees shall report on trends and evaluations of the gauge(s) of any increasing trends in their angual reports and shall include
	the cause(s) of any increasing trends in their annual reports and shall include actions to arrest increasing trends in their annual reports and/or as part of their adaptive management process in an approved Watershed Management Program or Enhanced Watershed Management Program. Further, regardless of the WEP. Provide a state of the state of t
	the WER, Permit compliance with anti-degradation and anti-backsliding requirements shall be documented in permit fact sheets. Caltrans wet-weather WLAs (total recoverable metals):
	Metal Waste Load Allocation (kg/day)
	MetalWaste Load Anocation (kg/day)Cadmium $WER^1 x 5.3x10^{-11} x$ daily volume(L) - 0.03Copper $WER^{\frac{42}{2}} x 2.9x10^{-10} x$ daily volume (L) - 0.2
	Lead WER ¹ x $\frac{1.061.6}{1.6}$ x 10^{-9} x daily volume (L) $-\frac{0.070.6}{1.6}$ Zinc WER ¹ x $2.7x10^{-9}$ x daily volume (L) -1.6

Element	Key Findings and Regulatory Provisions
	$\frac{1}{2}$ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	2 The WER for this constituent is 3.97.
	*For municipal separate storm sewer system (MS4) discharges regulated under
	this TMDL with concentrations below WER-adjusted allocations, MS4
	Permittees shall track trends in concentrations and loads and, where increasing
	trends are observed shall conduct an evaluation of the cause(s) of the increasing trends in concentration and/or load within the contributing drainage
	area(s). MS4 Permittees shall then identify additional watershed control
	measures and corresponding time schedules for implementation to arrest the
	increasing trend(s). MS4 Permittees shall report on trends and evaluations of
	the cause(s) of any increasing trends in their annual reports and shall include
	actions to arrest increasing trends in their annual reports and/or as part of their
	adaptive management process in an approved Watershed Management
	Program or Enhanced Watershed Management Program. Further, regardless of
	the WER, Permit compliance with anti-degradation and anti-backsliding
	requirements shall be documented in permit fact sheets.
	General Industrial wet-weather WLAs (total recoverable metals):
	Metal Waste Load Allocation (kg/day)
	Cadmium WER ¹ x 1.6×10^{-10} x daily volume(L) $- 0.11$
	Copper WER ⁴² x 8.8x10 ⁻¹⁰ x daily volume (L) $- 0.5$
	Lead WER ¹ x $\frac{3.34.9}{2.2}$ x10 ⁻⁹ x daily volume (L) - $\frac{0.221.9}{1.0}$
	Zinc $WER^{1} \times 8.3 \times 10^{-9} \times daily volume (L) - 4.8$
	$\frac{1}{2}$ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. The WER for this constituent is 3.97.
	The wex for this constituent is 5.57.
	Concred Construction was weather WI As (total recoverable motals).
	General Construction wet-weather WLAs (total recoverable metals):
	General Construction wet-weather wLAs (total recoverable metals):MetalWaste Load Allocation (kg/day)
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x 5.9x10 ⁻¹¹ x daily volume(L) - 0.04
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x 5.9x10 ⁻¹¹ x daily volume(L) - 0.04
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x \text{ daily volume}(L) - 0.04$ Copper $WER^{42} x 3.2x10^{-10} x \text{ daily volume}(L) - 0.2$
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^{-9} x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^{-9} x$ daily volume (L) - $\frac{4.8}{0.8}$ $^1WER(s)$ have a default value of 1.0 unless site-specific WER(s) are approved.
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^9 x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^9 x$ daily volume (L) - 4.8
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^{-9} x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^{-9} x$ daily volume (L) - $\frac{4.8}{1.21}$ $^1WER(s)$ have a default value of 1.0 unless site-specific WER(s) are approved. 2 The WER for this constituent is 3.97.
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^{-9} x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^{-9} x$ daily volume (L) - 4.8 $^1WER(s)$ have a default value of 1.0 unless site-specific WER(s) are approved. 2 The WER for this constituent is 3.97.Each storm water permittee under the general industrial and
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^{-9} x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^{-9} x$ daily volume (L) - $\frac{4.8}{0.8}$ 1 WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. 2 The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{1.21.8}x10^{-9} x$ daily volume (L) - $\frac{0.080.68}{0.68}$ Zinc $WER^1 x 3.01x10^{-9} x$ daily volume (L) - 4.8 $^1WER(s)$ have a default value of 1.0 unless site-specific WER(s) are approved. 2 The WER for this constituent is 3.97.Each storm water permittee under the general industrial and
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x \frac{1.21.8}{x}x10^9 x$ daily volume (L) - $\frac{0.080.68}{x}$ Zinc $WER^1 x 3.01x10^9 x$ daily volume (L) - $\frac{4.8}{x}$ ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x 1.21.8x10^9 x$ daily volume (L) - 0.2Lead $WER^1 x 3.01x10^9 x$ daily volume (L) - 0.48Zinc $WER^1 x 3.01x10^9 x$ daily volume (L) - 0.48 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) - 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) - 0.2Lead $WER^1 x 4.21.8x10^9 x$ daily volume (L) - 0.080.68Zinc $WER^1 x 3.01x10^9 x$ daily volume (L) - 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x $5.9x10^{-11}$ x daily volume(L) -0.04 CopperWER ⁴² x $3.2x10^{-10}$ x daily volume (L) -0.2 LeadWER ¹ x $4.21.8x10^{-9}$ x daily volume (L) $-0.080.68$ ZincWER ¹ x $3.01x10^{-9}$ x daily volume (L) -4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x $7.6x10^{-12}$ x daily volume(L) $-4.8x10^{-6}$
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x$ daily volume(L) = 0.04Copper $WER^{42} x 3.2x10^{-10} x$ daily volume (L) = 0.2Lead $WER^1 x \frac{1.21.8}{x}10^{-9} x$ daily volume (L) = 0.080.68Zinc $WER^1 x 3.01x10^9 x$ daily volume (L) = 0.080.68^1 WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.^2 The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)Cadmium $WER^1 x 7.6x10^{-12} x$ daily volume(L) = 4.8x10^6Copper $WER^1 x 4.2x10^{-11} x$ daily volume(L) = 2.6x10^{-5}
	MetalWaste Load Allocation (kg/day)Cadmium $WER^1 x 5.9x10^{-11} x daily volume(L) - 0.04$ Copper $WER^{42} x 3.2x10^{-10} x daily volume(L) - 0.2$ Lead $WER^1 x 1.21.8x10^{-9} x daily volume(L) - 0.2$ Lead $WER^1 x 3.01x10^{-9} x daily volume(L) - 0.080.68$ Zinc $WER^1 x 3.01x10^{-9} x daily volume(L) - 4.8$ 1 WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. 2 The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)Cadmium $WER^1 x 7.6x10^{-12} x daily volume(L) - 4.8x10^{-6}$ Copper $WER^1 x 4.2x10^{-11} x daily volume(L) - 2.6x10^{-5}$ Lead $WER^1 x 4.2x10^{-10} x daily volume(L) - 4.8x10^{-6}$
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x $5.9x10^{-11}$ x daily volume(L) – 0.04CopperWER ⁴² x $3.2x10^{-10}$ x daily volume (L) – 0.2LeadWER ¹ x $1.21.8x10^{-9}$ x daily volume (L) – 0.080.68ZincWER ¹ x $3.01x10^{-9}$ x daily volume (L) – 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x $7.6x10^{-12}$ x daily volume(L) – $4.8x10^{-6}$ CopperWER ¹ x $1.52.3x10^{-10}$ x daily volume (L) – $2.6x10^{-5}$ LeadWER ¹ x $3.9x10^{-10}$ x daily volume (L) – $2.2x10^{-4}$
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x $5.9x10^{-11}$ x daily volume(L) - 0.04CopperWER ⁴² x $3.2x10^{-10}$ x daily volume (L) - 0.2LeadWER ¹ x $1.21.8x10^{-9}$ x daily volume (L) - $0.080.68$ ZincWER ¹ x $3.01x10^{-9}$ x daily volume (L) - 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x $7.6x10^{-12}$ x daily volume(L) - $4.8x10^{-6}$ CopperWER ¹ x $1.52.3x10^{-10}$ x daily volume (L) - $2.6x10^{-5}$ LeadWER ¹ x $3.9x10^{-10}$ x daily volume (L) - $2.2x10^{-4}$
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x 5.9x10 ⁻¹¹ x daily volume(L) - 0.04CopperWER ⁴² x 3.2x10 ⁻¹⁰ x daily volume (L) - 0.2LeadWER ¹ x 1.21.8x10 ⁻⁹ x daily volume (L) - 0.080.68ZincWER ¹ x 3.01x10'9 x daily volume (L) - 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x 7.6x10 ⁻¹² x daily volume(L) - 4.8x10 ⁻⁶ CopperWER ¹ x 4.2x10 ⁻¹¹ x daily volume (L) - 2.6x10 ⁻⁵ LeadWER ¹ x 3.9x10 ⁻¹⁰ x daily volume (L) - 2.2x10 ⁻⁴ ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x 5.9×10^{-11} x daily volume(L) - 0.04CopperWER ⁴² x 3.2×10^{-10} x daily volume (L) - 0.2LeadWER ¹ x $1.21.8 \times 10^{-9}$ x daily volume (L) - $0.080.68$ ZincWER ¹ x 3.01×10^{-9} x daily volume (L) - 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x 7.6×10^{-12} x daily volume(L) - 4.8×10^{-6} CopperWER ¹ x 4.2×10^{-11} x daily volume (L) - 2.6×10^{-5} LeadWER ¹ x 3.9×10^{-10} x daily volume (L) - 2.2×10^{-5} Verentian WER ¹ x 3.9×10^{-10} x daily volume (L) - 2.2×10^{-5} LeadWER ¹ x $1.52.3 \times 10^{-10}$ x daily volume (L) - 2.2×10^{-6} Verentian WER ¹ x 3.9×10^{-10} x daily volume (L) - 2.2×10^{-4} ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97 .*Regardless of the WER, for discharges regulated under this TMDL with
	MetalWaste Load Allocation (kg/day)CadmiumWER ¹ x 5.9x10 ⁻¹¹ x daily volume(L) - 0.04CopperWER ⁴² x 3.2x10 ⁻¹⁰ x daily volume (L) - 0.2LeadWER ¹ x 1.21.8x10 ⁻⁹ x daily volume (L) - 0.080.68ZincWER ¹ x 3.01x10'9 x daily volume (L) - 4.8 ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.Each storm water permittee under the general industrial and construction storm water permits will receive individual waste load allocations per acre based on the total acres of their facility.Individual General Construction or Industrial Permittees WLAs (total recoverable metals):MetalWaste Load Allocation (g/day/acre)CadmiumWER ¹ x 7.6x10 ⁻¹² x daily volume(L) - 4.8x10 ⁻⁶ CopperWER ¹ x 4.2x10 ⁻¹¹ x daily volume (L) - 2.6x10 ⁻⁵ LeadWER ¹ x 3.9x10 ⁻¹⁰ x daily volume (L) - 2.2x10 ⁻⁴ ¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved.

Element	Key Findings and Regulatory Provisions				
	be reliably maintained by the facility's applicable treatment technologies				
	existing at the time of permit issuance, reissuance, or modification unless anti-				
	<u>backsliding requirements in Clean Water Act section 402(o) and anti-</u> degradation requirements are met. Permit compliance with anti-degradation				
	and anti-backsliding requirements shall be documented in permit fact sheets				
	Other NPDES Permits				
	Concentration-based wet-weather waste load allocations apply to the				
	other NPDES permits* that discharge to all reaches of the Los Angeles				
	River and its tributaries.				
	Wet-weather WLAs for other permits (total recoverable metals)				
	Cadmium (µg /L) Copper (µg /L) Lead (µg /L) Zinc (µg /L)				
	WER ¹ x 3.1 WER ⁴² x 17 WER ¹ x 6294 WER ¹ x 159				
	¹ WER(s) have a default value of 1.0 unless site-specific WER(s) are approved. ² The WER for this constituent is 3.97.				
	*Regardless of the WER, for discharges regulated under this TMDL with				
	concentrations below WER-adjusted allocations, effluent limitations shall				
	ensure effluent concentrations do not exceed the level of water quality that can be reliably maintained by the facility's applicable treatment technologies existing at the time of permit issuance, reissuance, or modification unless anti- backsliding requirements in Clean Water Act section 402(o) and anti- degradation requirements are met. Permit compliance with anti-degradation				
	and anti-backsliding requirements shall be documented in permit fact sheets.				
	* "Other NPDES permits" refers to minor NPDES permits, general				
	non-storm water NDPES permits, and major permits other than the				
	Tillman, LA-Glendale, and Burbank POTWs.				
Margin of Safety	There is an implicit margin of safety that stems from the use of				
	conservative values for the translation from total recoverable to the				
	dissolved fraction during the dry and wet periods. In addition, the				
	TMDL includes a margin of safety by evaluating wet-weather conditions separately from dry-weather conditions, which is in effect,				
	assigning allocations for two distinct critical conditions. Furthermore,				
	the use of the wet-weather model to calculate load allocations for open				
	space can be applied to the margin of safety because it tends to				
	overestimate loads from open spaces, thus reducing the available waste				
load allocations to the permitted discharges. Conservation					
	were made in the development of site-specific WERs, such as the use of				
	the Streamlined Procedure calculation method, which results in a lower				
	WER. An additional explicit margin of safety is provided in Reaches 1-				
	4 and Burbank Western Channel for which a site specific WER has				
	been developed. Specifically, while the copper targets and loading				
	capacity are adjusted based on the final WER of 3.96, only the WLAs				
	for Tillman WRP, LA Glendale WRP, and Burbank WRP are adjusted using the site-specific WER until additional data are collected to				
	determine whether the site specific WER is fully protective of aquatic				
	life in all reaches and can be appropriately applied to all LAs and				
	WLAS.				

Element	Key Findings and Regulatory Provisions		
Implementation	The regulatory mechanisms used to implement the TMDL will include		
	the <u>municipal separate storm sewer system NPDES permits that cover</u>		
	MS4 discharges within the Los Angeles River Watershed, including the		
	Los Angeles County Municipal <u>Separate</u> Storm <u>Sewer System</u> (<u>MS4</u>) Water NPDES Permit-(<u>MS4</u>), the City of Long Beach MS4		
	<u>NPDES Permit</u> , and the Caltrans <u>NPDES Statewide sS</u> torm <u>wW</u> ater		
	Permit, major NPDES permits, including individual industrial storm		
	water permits; minor NPDES permits, general NPDES permits,		
	including the general permit for discharges of potable water from water		
	supply distribution systems; general industrial storm water NPDES		
	permits,—; and general construction storm water NPDES permits.		
	Nonpoint sources will be regulated through the authority contained in sections 13263 and 13269 of the Water Code, in conformance with the		
	State Water Resources Control Board's Nonpoint Source		
	Implementation and Enforcement Policy (May 2004). Each NPDES		
	permit assigned a WLA shall be reopened or amended at reissuance, in		
	accordance with applicable laws, to incorporate the applicable WLAs as		
	a permit requirement.		
	The Regional Board shall reconsider this TMDL by January 11, 2011		
	based on additional data obtained from special studies. Table 7-13-2		
	presents the implementation schedule for the responsible permittees.		
	Implementation of WERs		
	The copper WER of 3.96 for Reaches 1-4 of the Los Angeles River and		
	Burbank Western Channel shall apply until this TMDL is reconsidered.		
	At the time this TMDL is reconsidered, the <u>Site-specific</u> WERs for Reaches 1 4 and Burbank Western Channel may be modified or revert		
	back to a default of 1.0 unless additionalif data indicate that the WERs		
	are not protective of either the beneficial uses of the waterbody to		
	which they apply or downstream beneficial useshave been collected		
	that support application of a WER to all WLAs and LAs, or confirm		
	continued application of the site specific WER to the WLAs for the		
	POTWs only . Any WER that is incorporated into a discharger's permit		
	shall include an appropriate reopener that authorizes the Regional Board to modify the WER as appropriate to accommodate new		
	information.		
Non storm waterOther NPDES permits (including POTW			
	major, minor, and general permits):		
	Permit writers may translate applicable waste load allocations into daily		
	maximum and monthly average effluent limits for the major, minor and		
	general NPDES permits by applying the effluent limitation procedures in Section 1.4 of the State Water Resources Control Board's Policy for		
	Implementation of Toxics Standards for Inland Surface Waters,		
	Enclosed Bays, and Estuaries of California (2000) or other applicable		
	engineering practices authorized under federal regulations.		
	Permittees that hold individual NPDES permits and solely discharge		
	storm water may be allowed (at Regional Board discretion) compliance		

Element	Key Findings and Regulatory Provisions			
	schedules up to January 11, 2016 to achieve compliance with final WLAs.			
	General industrial storm water permits:			
	Waste load allocations will be incorporated into the State Board general permit upon renewal or T the Regional Board will develop a watershed-specific general industrial storm water permit to incorporate waste load allocations.			
	Dry-weather implementation			
	Non-storm water flows authorized by Order No. 97-03 DWQ, or any successor order, <u>including Order No. 2014-0057-DWQ</u> , are exempt from the dry-weather waste load allocation equal to zero. Instead, these authorized non-storm water flows shall meet the reach-specific concentration-based waste load allocations assigned to the "other NPDES permits". The dry-weather waste load allocation equal to zero applies to unauthorized non-storm water flows, which are prohibited by Order No. 97-03 DWQ and Order No. 2014-0057-DWQ.			
	It is anticipated that the dry-weather waste load allocations will be implemented by requiring improved best management practices (BMPs) to eliminate the discharge of non-storm water flows. However, permit writers must provide adequate justification and documentation to demonstrate that specified BMPs are expected to result in attainment of the numeric waste load allocations.			
	Wet-weather implementation			
	General industrial storm water permittees are allowed interim wet- weather concentration-based waste load allocations based on benchmarks contained in EPA's Storm Water Multi-sector General Permit for Industrial Activities. The interim waste load allocations apply to all industry sectors and apply until no later than January 11, 2016.			
	Interim wet-weather WLAs for general industrial storm water			
	permittees (total recoverable metals)*			
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
	*Based on USEPA benchmarks for industrial storm water sector			
	Until-Prior to January 11, 2011, interim waste load allocations will not be interpreted as enforceable permit conditions. If monitoring demonstrates that interim waste load allocations are being exceeded, the permittee shall evaluate existing and potential BMPs, including structural BMPs, and implement any necessary BMP improvements. It is anticipated that monitoring results and any necessary BMP improvements would occur as part of an annual reporting process. After January 11, 2011, interim waste load allocations shall be translated into			

Element	Key Findings and Regulatory Provisions		
	enforceable permit conditions. Compliance with permit conditions may be demonstrated through the installation, maintenance, and monitoring of Regional Board-approved BMPs. If this method of compliance is chosen, permit writers must provide adequate justification and documentation to demonstrate that BMPs are expected to result in attainment of interim waste load allocations.		
	The general industrial storm water permits shall achieve final wet- weather waste load allocations no later than January 11, 2016, which shall be expressed as NPDES water quality-based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs if adequate justification and documentation demonstrate that BMPs are expected to result in attainment of waste load allocations.		
	General construction storm water permits:		
	Waste load allocations will be incorporated into the State Board general permit upon renewal or into a watershed-specific general permit developed by the Regional Board.		
	Dry-weather implementation		
	Non-storm water flows authorized by the General Permit for Storm Water Discharges Associated with Construction Activity (Water Quality Order No. 99-08 DWQ), or any successor order, <u>including</u> <u>Order No. 2009-0009-DWQ</u> , are exempt from the dry-weather waste load allocation equal to zero as long as they comply with the provisions of sections C.3.and A.9 of the Order No. 99-08 DWQ, <u>and sections III,</u> <u>V.A.</u> , and VI of Order No. 2009-0009-DWQ, which state that these authorized non-storm discharges shall be (1) infeasible to eliminate (2) comply with BMPs as described in the Storm Water Pollution Prevention Plan prepared by the permittee, and (3) not cause or contribute to a violation of water quality standards, or comparable provisions in any successor order. Unauthorized non-storm water flows are already prohibited by Order No. 99-08 DWQ and Order No. 2009- <u>0009-DWQ</u> .		
	Wet-weather implementation		
	By January 11, 2013, the construction industry will submit the results of BMP effectiveness studies to determine BMPs that will achieve compliance with the final waste load allocations assigned to construction storm water permittees. Regional Board staff will bring the recommended BMPs before the Regional Board for consideration by January 11, 2014. General construction storm water permittees will be considered in compliance with final waste load allocations if they implement these Regional Board approved BMPs. All permittees must implement the approved BMPs by January 11, 2015. If no effectiveness studies are conducted and no BMPs are approved by the Regional Board by January 11, 2014, eEach general construction storm water permit holder will be subject to site-specific BMPs and monitoring		

Element Key Findings and Regulatory Provisions			
	requirements to demonstrate compliance with final waste load allocations.		
	MS4 and Caltrans permits		
	Applicable CTR limits are being met most of the time during dry weather, with episodic exceedances. Due to the expense of obtaining accurate flow measurements required for calculating loads, concentration-based permit limits may apply during dry weather. These concentration-based limits would be equal to dry-weather reach- specific numeric targets.		
	Each municipality and permittee will be required to meet the storm water waste load allocations shared by the two-MS4s and Caltrans permittees at the designated TMDL effectiveness monitoring points. A phased implementation approach, using a combination of non-structural and structural BMPs may be used to achieve compliance with the waste load allocations. The administrative record and the fact sheets for the MS4 and Caltrans storm water permits must provide reasonable assurance that the BMPs selected will be sufficient to implement the waste load allocations.		
Seasonal Variations and	The implementation schedule for the MS4 and Caltrans permittees consists of a phased approach. The watershed is divided into five jurisdictional groups based on the subwatersheds of the tributaries that drain to each reach of the river, as presented in Table 7-13-3. Each jurisdictional group shall achieve compliance in prescribed percentages of its subwatershed(s), with total compliance to be achieved within 22 years. Jurisdictional groups can be reorganized or subdivided upon approval by the Executive Officer.		
Critical Conditions	allocations for dry weather and wet weather. For dry weather, critical flows for each reach are established from the long-term flow records (1988-2000) generated by stream gages located throughout the watershed and in selected reaches. The median dry- weather urban runoff plus the combined design capacity of the three major POTWs is selected as the critical flow since most of the flow is from effluent which results in a relatively stable dry-weather flow condition. In areas where there are no flow records, an area-weighted approach is used to assign flows to these reaches.		
	Wet-weather allocations are developed using the load-duration curve concept. The total wet-weather waste load allocation for wet weather varies by storm. Given this variability in storm water flows, no justification was found for selecting a particular sized storm as the critical condition.		
Compliance Monitoring and Special Studies			

Element	Key Findings and Regulatory Provisions
	revised scientific assumptions. Below the Regional Board identifies the various goals of monitoring efforts and studies. The programs, reports, and studies will be developed in response to subsequent orders issued by the Executive Officer.
	Ambient Receiving Water Monitoring
	An ambient_receiving water monitoring program is necessary to assess water quality throughout the Los Angeles River and its tributaries and the progress being made to remove the metals impairments. The MS4 and Caltrans storm water NPDES permittees in each jurisdictional group are jointly responsible for implementing the ambient_receiving water_monitoring program. The responsible agencies shall sample for total recoverable metals, dissolved metals, including cadmium and zinc, and hardness once per month at each ambient_receiving water monitoring location at least until the TMDL is re-considered at year 5. The reported detection limits shall be below the hardness adjusted CTR criteria. Eight ambient-receiving water monitoring points currently exist
	in the Los Angeles River and its tributaries as part of the City of Los Angeles Watershed Monitoring Program. These monitoring points could be used to assess water quality.
	AmbientReceiving Water
	MonitoringPointsReaches and TributariesWhite OakLA River 6, Aliso Creek, McCoy Creek, Bell CreekAvenueSepulvedaSepulvedaLA River 5, Bull CreekBoulevard
	TujungaLA River 4, Tujunga WashAvenue
	Colorado LA River 3, Burbank Western Channel, Verdugo Wash Boulevard
	Figueroa LA River 3, Arroyo Seco Street
	Washington LA River 2 Boulevard
	Rosecrans LA River 2, Rio Hondo (gage just above Rio Hondo) Avenue
	WillowLA River 1, Compton Creek (gage at Wardlow)Street
	TMDL Effectiveness Monitoring
	The MS4 and Caltrans storm water NPDES permittees in each jurisdictional group are jointly responsible for assessing progress in reducing pollutant loads to achieve the TMDL. Each jurisdictional group is required to submit for approval by the Executive Officer a coordinated monitoring plan that will demonstrate the effectiveness of the phased implementation schedule for this TMDL (See Table 7-13.2), which requires attainment of the applicable waste load allocations in prescribed percentages of each subwatershed over a 22-year period. The

Key Findings and Regulatory Provisions		
monitoring locations specified for the <u>ambient receiving water</u> monitoring program may be used as effectiveness monitoring locations.		
The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting dry-weather waste load allocations if the in- stream pollutant concentration or load at the first downstream monitoring location is equal to or less than the corresponding concentration- or load-based waste load allocation. Alternatively, effectiveness of the TMDL may be assessed at the storm drain outlet based on the waste load allocation for the receiving water. For storm drains that discharge to other storm drains, the waste load allocation will be based on the waste load allocation for the ultimate receiving water for that storm drain system. The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting wet-weather waste load allocations if the loading at the downstream monitoring location is equal to or less then the wet-weather waste load allocation.		
The general industrial storm water permit shall contain a model monitoring and reporting program to evaluate BMP effectiveness. A permittee enrolled under the general permit shall have the choice of conducting individual monitoring based on the model program or participating in a group monitoring effort. MS4 permittees are encouraged to take the lead in group monitoring efforts for industrial facilities within their jurisdiction because compliance with waste load allocations by these facilities will in many cases translate to reductions in metals loads to the MS4 system.		
The Tillman, LA-Glendale, and Burbank POTWs, and the remaining permitted discharges in the watershed will have effluent monitoring requirements to ensure compliance with waste load allocations.		
Monitoring to Determine Ongoing Protectiveness of WERs		
Additionally, tThe Tillman, LA-Glendale, and Burbank POTWs, and the Caltrans, Los Angeles County MS4, and Long Beach MS4 permittees shall conduct additional receiving water monitoring to verify that water quality conditions are similar to those of the 2008 and 2014 copper WER study periods. Monitoring is also required to determine if the WER-based copper WLAs will achieve downstream water quality standards. This additional monitoring shall be required through the POTWs' NPDES permit monitoring and reporting programs and the Los Angeles County and Long Beach MS4 Permits' monitoring and reporting programs or the Integrated Monitoring Programs and/or Coordinated Integrated Monitoring Programs, where approved by the Executive Officer of the Regional Board in lieu of the MS4 permits' monitoring and reporting programs, or other Regional Board required monitoring programs. Copper WER evaluation monitoring will consist of receiving water monitoring for key chemical parameters needed for estimates of WERs utilizing the Biotic Ligand Model (BLM). The Regional Board will evaluate the WER-based copper WLAs based on potential changes in the chemical characteristics of the water body that could impact the calculation or application of the WER and will revise		

Element	Key Findings and Regulatory Provisions		
I	the WERs and copper WLAs, if necessary, to ensure protection of beneficial uses.		
	Special Studies		
	The implementation schedule (see Table 7-13.2) allows time for special studies that may serve to refine the estimate of loading capacity, waste load and/or load allocations, and other studies that may serve to optimize implementation efforts. The Regional Board will re-consider the TMDL by January 11, 2011 in light of the findings of these studies. Studies may include:		
	• Refined flow estimates for the Los Angeles River mainstem and tributaries where there presently are no flow gages and for improved gaging of low-flow conditions.		
	• Water quality measurements, including a better assessment of hardness, water chemistry data (e.g., total suspended solids and organic carbon) that may refine the use of metals partitioning coefficients.		
	• Effects studies designed to evaluate site-specific toxic effects of metals on the Los Angeles River and its tributaries.		
	• Source studies designed to characterize loadings from background or natural sources		
	• Review of water quality modeling assumptions including the relationship between metals and total suspended solids as expressed in the potency factors and buildup and washoff and transport coefficients.		
	• Evaluation of aerial deposition and sources of aerial deposition.		
	• POTWs that are unable to demonstrate compliance with final waste load allocations must conduct source reduction audits by January 11, 2008.		
	• POTWs that will be requesting the Regional Board to extend their implementation schedule to allow for the installation of advanced treatment must prepare work plans, with time schedules to allow for the installation advanced treatment. The work plan must be submitted January 11, 2010.		

 Table 7-13.2 Los Angeles River and Tributaries Metals TMDL: Implementation Schedule

Date	Action	
January 11, 2006	Regional Board permit writers shall incorporate waste load allocations into NPDES permits. Waste load allocations will be implemented through NPDES permit limits in accordance with the implementation schedule contained herein, at the time of permit issuance, renewal, or re-opener.	
January 11, 2010	Responsible jurisdictions and agencies shall provide to the Regional Board results of the special studies. POTWs that will be requesting the Regional Board to extend their implementation schedule to allow for the installation of advanced treatment must submit work plans.	
January 11, 2011	The Regional Board shall reconsider this TMDL to re-evaluate the waste load allocations and the implementation schedule.	
	<mark>OTHER</mark> NPDES PERMITS (INCLUDING POTWS, OTHER DR, MINOR, AND GENERAL PERMITS)	
Upon permit issuance, renewal, or re-opener	The non-storm waterother NPDES permits shall achieve waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Permit writers may translate applicable waste load allocations into daily maximum and monthly average effluent limits for the major, minor and general NPDES permits by applying the effluent limitation procedures in Section 1.4 of the SIP or other applicable engineering practices authorized under federal regulations. Effluent limitations based on WER-adjusted WLAs shall ensure that effluent concentrations and mass discharges do not exceed the levels of water quality that can be attained by performance of a facility's treatment technologies existing at the time of permit issuance, reissuance, or modification. Permittees that hold individual NPDES permits and solely discharge storm water may be allowed (at Regional Board discretion) compliance schedules up to January 11, 2016 to achieve compliance with final WLAs.	
GENERA	L INDUSTRIAL STORM WATER PERMITS	
Upon permit issuance, renewal, or re-opener	The general industrial storm water permittees shall achieve dry- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board- approved BMPs. Permittees shall begin to install and test BMPs to meet the interim wet-weather WLAs. BMP effectiveness monitoring will be implemented to determine progress in achieving interim wet- weather waste load allocations.	

Date	Action		
January 11, 2011	The general industrial storm water permits shall achieve interim wet- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs. Permittees shall begin an iterative BMP process including BMP effectiveness monitoring to achieve compliance with final waste load allocations.		
January 11, 2016	The general industrial storm water permits shall achieve final wet- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs.		
GENERAL	CONSTRUCTION STORM WATER PERMITS		
Upon permit issuance, renewal, or re-opener	Non-storm water flows not authorized by Order No. 99-08 DWQ, or any successor order, <u>including Order No. 2009-0009-DWQ</u> , shall achieve dry-weather waste load allocations of zero. Waste load allocations shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs.		
January 11, 2013	The construction industry will submit the results of wet weather BMP effectiveness studies to the Regional Board for consideration In the event that no effectiveness studies are conducted and no BMPs are approved, permittees shall be subject to site specific BMPs and monitoring to demonstrate BMP effectiveness.		
January 11, 2014	The Regional Board will consider results of the wet weather BMP effectiveness studies and consider approval of BMPs.		
January 11, 2015	All general construction storm water permittees shall <u>be subject to</u> <u>site-specific BMPs and monitoring requirements to demonstrate</u> <u>compliance with final waste load allocations.implement Regional</u> Board approved BMPs.		
MS4 AN	MS4 AND CALTRANS STORM WATER PERMITS		
April 11, 2007	In response to an order issued by the Executive Officer, each jurisdictional group must submit a coordinated monitoring plan, to be approved by the Executive Officer, which includes both TMDL effectiveness monitoring and ambient monitoring. Once the coordinated monitoring plan is approved by the Executive Officer ambient monitoring shall commence within 6 months.		

Date	Action	
January 11, 2010 (Draft Report) July 11, 2010 (Final Report)	Each jurisdictional group shall provide a written report to the Regional Board outlining the how the subwatersheds within the jurisdictional group will achieve compliance with the waste load allocations. The report shall include implementation methods, an implementation schedule, proposed milestones, and any applicable revisions to the TMDL effectiveness monitoring plan.	
January 11, 2012	Each jurisdictional group shall demonstrate that 50% of the group's total drainage area served by the storm drain system is effectively meeting the dry-weather waste load allocations and 25% of the group's total drainage area served by the storm drain system is effectively meeting the wet-weather waste load allocations.	
January 11, 2020	Each jurisdictional group shall demonstrate that 75% of the group's total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs.	
January 11, 2024	Each jurisdictional group shall demonstrate that 100% of the group's total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs and 50% of the group's total drainage area served by the storm drain system is effectively meeting the wet-weather WLAs.	
January 11, 2028	Each jurisdictional group shall demonstrate that 100% of the group's total drainage area served by the storm drain system is effectively meeting both the dry-weather and wet-weather WLAs.	

Jurisdictional Group	Responsible Juris	dictions & Agencies	Subwatershed(s)
1	Carson County of Los Angeles City of Los Angeles Compton Huntington Park Long Beach Lynwood Signal Hill Southgate Vernon		Los Angeles River Reach 1 and Compton Creek
2	Alhambra Arcadia Bell Bell Gardens Bradbury Carson Commerce Compton County of Los Angeles Cudahy Downey Duarte El Monte Glendale Huntington Park Irwindale La Canada Flintridge	Long Beach City of Los Angeles Lynwood Maywood Monrovia Montebello Monterey Park Paramount Pasadena Pico Rivera Rosemead San Gabriel San Marino Sierra Madre South El Monte South El Monte South Pasadena Southgate Temple City Vernon	Los Angeles River Reach 2, Rio Hondo, Arroyo Seco, and all contributing sub watersheds
3	City of Los Angeles County of Los Angeles Burbank Glendale La Canada Flintridge Pasadena		Los Angeles River Reach 3, Verdugo Wash, Burbank Western Channel
4-5	Burbank Glendale City of Los Angeles County of Los Angeles San Fernando		Los Angeles River Reach 4, Reach 5, Tujunga Wash, and all contributing subwatersheds
6	Calabasas City of Los Angeles County of Los Angeles Hidden Hills		Los Angeles River Reach 6, Bell Creek, and all contributing subwatersheds

Table 7-13.3 Los Angeles River and Tributaries Metals TMDL: Jurisdictional Groups